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An Inequality for Convex Functions Involving
G-Majorization

by

by Ramdn V. León and Frank Proschan
The Florida State University

ABSTRACT

In this paper we derive a simple inequality involving expectations of

convex fuixtions and the notion of G-niajori zation. The result extends a

similar inequality of Marshall and Proschan (1965) , J. Mat h.. Anal. Applic.

Useful applications of the n~ re general inequality are presented.
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An Inequality for Convex Functions Involving
G-Major ization

Ramdn V. LeOn and Frank Proschan
The Florida State University

In this note we derive a simple inequality involving expectations of

convex functions and the notion of G-majorizatj on . The result extends a

similar inequality of Marshall and Proschan (1965) involving majorization .

A nuther of useful applications of the more general inequality are then

• presented.

Let C be a group of matrices (linear transformations) acting on R”.

A vector ~ (a1,.. .,an) is said to G-majorize a vector b (b1,.. . ,h~),

written ~ ~~, if b is in the convex hull of the C-orbit of ~~~. If G P~,

the group of permutation matrices , G-majorization coincides with majori-

zation (see Eaton and Perlman, 1976). A randan vector 
~ 

(X
~~••~~

Xn) is

said to be C-invariant if ~ is stochastically eaual to g~ for all geCL When

C - P~, we say that X1,. • are exchangeable random variables. For vectors

~ and ~~, let ~~ ~~ (a1b1~...3a~b~).

Theoren 1. Let C be a finite group such that for all geG there exist h

and kcC for which h(g~~~) = ~~~ for all vectors ~~ and ~~~. Let ~ be a G-invariant

random vector, $ a continuous, convex, G-invariant function and ~ ~~~. Then

(1) E$(~~) �

?-kreover, if ~ is strictly convex, equality holds only when ~ - g~ for sane

geG, or when the are all zero with probability one. H

Proof. Let G - ~~~~~~ Then we may write ~ - J  ~~~~~ where each

in m
� 0 and ~ 1. It fo1l~~s that E+(~~~) E+(1.~1 ~j gj~ ]~~) —

i—i
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E$( E
1 c*~tg~~ ~1) � 

~~ 
a3

E$(g
3~ ~

) For each j ,  let h3 
and k

3 
be the elements

of G for which h~ (g~~~ ) = ~~~~~ Then E~(g~~~ ) — E$(h~ (g~~ ’~)) [by the C-

invariance of $1 — E$(~~k~~) — E$ (~.~)  [by the C-invariance of Xl. Thus :
Z a.E$(~~X) = E$ (a~~)

j —1 3

In case $ is strictly convex, it is clear fran the above proof that

equality holds only if for some geG, ~~ = 
~~~ with probability one. 0

Remark 1. If C = P~, then for all geC and vectors ~ and ~~~, g4(g~~~) I]
= 

~~~~~ 
Therefore in this special case the hypothesis of Theorem 1 is

satisfied. It follows that the main result of Marshall and Proschan (1965)

involving majorization is a special case of Theorem 1.

Remark 2. Other groups of interes t for which the hypothesis of the

theorem is satisfied are: (a) The group G1 of sign changes and (b) the

group G2 of permutations and sign changes, as is readily verified.

Remark 3. Note that in G2,g (g~
.
~) x a•g~~ for all geG2. For example

if ~ -~ 
[
~ 

3~j then [~ ~][I~ ~
j a.b) - a.([~ ~Jb). So in C2 the milder re-

quirenent is needed that for all geG there exist h and keG for which h(g~~~)

— ~~kk. Also note that this condition is not satisfied for sane groups . For

exanpie , if G = [
~
, 

~[,i and g = [
~ ~

, then clearly there do not exist

h and k for which h(g~~~,) -

Remark 4. Let G - C2 and let vectors a and b have all components non-

negative. Then ~ b if and only if a is weakly majorized by ~ . (See Marshall ,

Walkup and Wets (1967) for the definition of weak majorization.)

Similarly, let G - C1, and let vectors ~ and ~ have all components

_ _ _  -• --- -- .— -- •—~~~~~~~~~ . --~~~~~~~ •-.-— ~~~~~—— — - —  —- —- - ,-. - -—~~~~~~ —-~~~~~_ _ _
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C
nonnegative. Then ~ ~ if aid only if a~ 

� b~ for i — 1,2 ,...,n. It follows

that Theorem 1 yields results concerning weak majorization and the usual par-

tial ordering of the plane . (See also Remark 8.)

Remark S. For comments on a converse to Theorem 1, see Remark 3 of

Marshall and Proschan (1965) . Also see Remark 4 of that paper for a counter-

example showing that the conclusion of Theorem 1 need not necessarily hold

when we weaken the hypothesis to require 4 to be only continuous and isotone

with resnect to the G-majorization ordering, i.e., C-monotone. (A C-invariant

convex function is necessarily G-monotone). However, by using a path lemma of

Eaton and Pen m an (1976), it is possible to show that if G is a reflection

group, then Theorem 1 holds when ~ is merely continuous and convex along all

the line segments joining ~ with g~ for all geG. (See Eaton and Pen man (1976)

for the definition of a reflection group.) This is consistent with Remark 4

of Marshall and Proschan (1965). Thus if G = C2 we need only require that •,
considered as a function of a specified pair of coordinates with all other co-

ordinates held fixed, be convex. Note that this condition on $ is the same as

that in Remark 4 of Marshall and Proschan (1965) . Similarly , if C = C1, we

need only require that 
~~, 

considered as a function of a specified coordinate

with all other coordinates held fixed, be convex.

Corollary 1. Let C = C2. Let X(a1), .. . ,X(a~) be independent random
variables, where X(a

~
) is normally distributed with mean zero and standard

deviation a1. Let • be continuous , convex, and C-invariant, and (a1,. . .
G
� 

~~~~~~~~~~~~~~~~ Then

(2) E$(X(o1),...,X(a~)) � E4i (X (a~ ’), . ..,X(a~~~)).

Proof. Let Y1,. . . ,Y~ be independently distributed standard normal random

____________ • -- —,-~~ -— ~~~
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£ variables. Then E4(a1Y1,.. . ~~~~ � E~ (a1Y1,. . . ,a~~Y~) by Theorem 1.

Since a1Y. and X(a1) have the same distribution, the result follows. 0

Remark 6. Similar results are true when C is 
~n 

or C1.

Remark 7. Note that the only property of X(ai) used in the proof of

Corollary 1 is that X(a
~
) and ci1Y have the same distribution where Y is a

random variable distributed symmetrically about zero. Thus, for example,

Corollary 1 is still true when X(ci1) is uniformly distributed on the 
interval

(-a. ,a~). For simplicity, Corollary 1 is stated for the special case X(a~)

is normal .
C1 G2

Renark 8. Note that sincea�bor~~ �~~ imp1ies~~ �~~, (2)holds when

P Cl
~ 

or ~~ � ~~. (A similar remark applies whenever the C2 ordering holds.)

Corollary 2. Let ~ be continuous, convex, and invariant under pennu-
C2

tations and sign changes , and let ~ � ~~. Then

(3) ~* • (a1x1, . . . ,am~
xj~
) � • ~~~~~~ . ,b~x~) where ~ denotes siinnmtion

over all sign changes and permutations of the x1.

Proof. (3) is an imediate consequence of (1), where P{(x1,...,x~) =

— 

21~fl!
’ where (i1,...,i~) is a permutation of

(1,2,...,n) and a
~

= 0 or 1 for i=1,...,n.

Remark 9. Corollary 2 is a variation of ~luirhead’s Theorem. (See Hardy,

Littlewood, and POlya, 1952, pp. 44-48.)

Remark 10. For other nossible annlications yielding inequalities, see

Marshall and Pnoschan (1965) .
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